Blob Blame History Raw
Index: chromium-124.0.6367.60/third_party/skia/BUILD.gn
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/BUILD.gn
+++ chromium-124.0.6367.60/third_party/skia/BUILD.gn
@@ -191,6 +191,12 @@ opts("skx") {
   }
 }
 
+opts("vsx") {
+  enabled = current_cpu == "ppc64"
+  sources = skia_opts.vsx_sources
+  cflags = [ "-mcpu=power9", "-mtune=power9" ]
+}
+
 # Any feature of Skia that requires third-party code should be optional and use this template.
 template("optional") {
   if (invoker.enabled) {
@@ -1482,6 +1488,7 @@ skia_component("skia") {
     ":skx",
     ":typeface_fontations",
     ":vello",
+    ":vsx",
     ":webp_decode",
     ":wuffs",
     ":xml",
@@ -1659,7 +1666,10 @@ skia_static_library("pathkit") {
   public_configs = [ ":skia_public" ]
   configs = skia_library_configs
 
-  deps = [ ":hsw" ]
+  deps = [
+    ":hsw",
+    ":vsx",
+  ]
 
   sources = []
   sources += skia_pathops_sources
Index: chromium-124.0.6367.60/third_party/skia/gn/skia/BUILD.gn
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/gn/skia/BUILD.gn
+++ chromium-124.0.6367.60/third_party/skia/gn/skia/BUILD.gn
@@ -163,6 +163,8 @@ config("default") {
       "-mfpmath=sse",
     ]
     ldflags += [ "-m32" ]
+  } else if (current_cpu == "ppc64") {
+    cflags += [ "-mcpu=power9", "-mtune=power9" ]
   }
 
   if (malloc != "" && !is_win) {
Index: chromium-124.0.6367.60/third_party/skia/include/core/SkTypes.h
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/include/core/SkTypes.h
+++ chromium-124.0.6367.60/third_party/skia/include/core/SkTypes.h
@@ -195,5 +195,44 @@ static constexpr uint32_t SK_InvalidGenI
 */
 static constexpr uint32_t SK_InvalidUniqueID = 0;
 
+//////////////////////////////////////////////////////////////////////
+// PPC defines
+
+#if defined(__powerpc64__) || defined(__PPC64__)
+    #ifndef SK_CPU_PPC64
+        #define SK_CPU_PPC64
+    #endif
+    #undef SK_CPU_SSE_LEVEL
+#endif
+
+// Newer versions of clang and gcc for ppc64 ship with wrappers that translate
+// Intel vector intrinsics into PPC VSX instrinsics, so we can pretend to have
+// to be Intel. Currently, full API support for SSSE3 on POWER8 and later
+// processors.
+#if defined(__POWER8_VECTOR__) && defined(__has_include) && \
+  !defined(SK_CPU_SSE_LEVEL)
+
+    // Clang ships both Intel and PPC headers in its PPC version, storing the
+    // PPC compatibility in a subdirectory that the compiler will include before
+    // its standard library include directory.
+    #if (__has_include(<tmmintrin.h>) && !defined(__clang__)) || \
+         __has_include(<ppc_wrappers/tmmintrin.h>)
+        #define SK_CPU_SSE_LEVEL    SK_CPU_SSE_LEVEL_SSSE3
+    #elif (__has_include(<emmintrin.h>) && !defined(__clang__)) || \
+           __has_include(<ppc_wrappers/emmintrin.h>)
+        #define SK_CPU_SSE_LEVEL    SK_CPU_SSE_LEVEL_SSE2
+    #endif
+
+    #ifdef SK_CPU_SSE_LEVEL
+        #define SK_PPC64_HAS_SSE_COMPAT
+        #ifndef NO_WARN_X86_INTRINSICS
+            #define NO_WARN_X86_INTRINSICS
+        #endif
+        #if defined(__clang__)
+            #define SK_PPC64_CLANG_MFPPR_BUG
+        #endif
+    #endif
+#endif
+
 
 #endif
Index: chromium-124.0.6367.60/third_party/skia/src/base/SkSpinlock.cpp
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/base/SkSpinlock.cpp
+++ chromium-124.0.6367.60/third_party/skia/src/base/SkSpinlock.cpp
@@ -33,7 +33,8 @@
 #endif
 
 // Renamed from "pause" to avoid conflict with function defined in unistd.h
-#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
+#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 && \
+    !defined(SK_PPC64_CLANG_MFPPR_BUG)
     #include <emmintrin.h>
     static void do_pause() { _mm_pause(); }
 #else
Index: chromium-124.0.6367.60/third_party/skia/src/opts/SkBitmapProcState_opts.h
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/opts/SkBitmapProcState_opts.h
+++ chromium-124.0.6367.60/third_party/skia/src/opts/SkBitmapProcState_opts.h
@@ -21,7 +21,13 @@
 // The rest are scattershot at the moment but I want to get them
 // all migrated to be normal code inside SkBitmapProcState.cpp.
 
-#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
+#if defined(SK_PPC64_HAS_SSE_COMPAT)
+    #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
+        #include <tmmintrin.h>
+    #else
+        #include <emmintrin.h>
+    #endif
+#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
     #include <immintrin.h>
 #elif defined(SK_ARM_HAS_NEON)
     #include <arm_neon.h>
Index: chromium-124.0.6367.60/third_party/skia/src/opts/SkBlitRow_opts.h
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/opts/SkBlitRow_opts.h
+++ chromium-124.0.6367.60/third_party/skia/src/opts/SkBlitRow_opts.h
@@ -69,7 +69,7 @@
 #endif
 
 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
-    #include <immintrin.h>
+    #include <emmintrin.h>
 
     static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
         __m128i scale = _mm_sub_epi32(_mm_set1_epi32(256),
Index: chromium-124.0.6367.60/third_party/skia/src/opts/SkRasterPipeline_opts.h
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/opts/SkRasterPipeline_opts.h
+++ chromium-124.0.6367.60/third_party/skia/src/opts/SkRasterPipeline_opts.h
@@ -1,5 +1,6 @@
 /*
  * Copyright 2018 Google Inc.
+ * Copyright 2023 Raptor Engineering, LLC
  *
  * Use of this source code is governed by a BSD-style license that can be
  * found in the LICENSE file.
@@ -75,6 +76,8 @@ using NoCtx = const void*;
     #define JUMPER_IS_SCALAR
 #elif defined(SK_ARM_HAS_NEON)
     #define JUMPER_IS_NEON
+#elif defined(SK_PPC64_HAS_SSE_COMPAT)
+    #define JUMPER_IS_VSX
 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
     #define JUMPER_IS_SKX
 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
@@ -107,6 +110,8 @@ using NoCtx = const void*;
     #include <math.h>
 #elif defined(JUMPER_IS_NEON)
     #include <arm_neon.h>
+#elif defined(JUMPER_IS_VSX)
+    #include <emmintrin.h>
 #else
     #include <immintrin.h>
 #endif
@@ -200,6 +205,184 @@ namespace SK_OPTS_NS {
         ptr[3] = a;
     }
 
+#elif defined(JUMPER_IS_VSX)
+    // Since we know we're using Clang, we can use its vector extensions.
+    template <typename T> using V = T __attribute__((ext_vector_type(4)));
+    using F   = V<float   >;
+    using I32 = V< int32_t>;
+    using U64 = V<uint64_t>;
+    using U32 = V<uint32_t>;
+    using U16 = V<uint16_t>;
+    using U8  = V<uint8_t >;
+
+    // We polyfill a few routines that Clang doesn't build into ext_vector_types.
+    SI F   min(F a, F b)     { return vec_min(a,b); }
+    SI I32 min(I32 a, I32 b) { return vec_min(a,b); }
+    SI U32 min(U32 a, U32 b) { return vec_min(a,b); }
+    SI F   max(F a, F b)     { return vec_max(a,b); }
+    SI I32 max(I32 a, I32 b) { return vec_max(a,b); }
+    SI U32 max(U32 a, U32 b) { return vec_max(a,b); }
+
+    SI F   abs_  (F v)   { return vec_abs(v); }
+    SI I32 abs_  (I32 v) { return vec_abs(v); }
+    SI F   rcp_approx(F v) { return vec_re(v); }
+    SI F   rcp_precise (F v) { F e = rcp_approx(v); return e * (2.0f - v * e); }
+    SI F   rsqrt_approx (F v)   { return vec_rsqrte(v); }
+
+    SI U16 pack(U32 v)       { return __builtin_convertvector(v, U16); }
+    SI U8  pack(U16 v)       { return __builtin_convertvector(v,  U8); }
+
+    SI F if_then_else(I32 c, F t, F e) {
+        return vec_or((vector float)vec_and((vector float)c, (vector float)t), (vector float)vec_andc((vector float)e, (vector float)c));
+    }
+    SI I32 if_then_else(I32 c, I32 t, I32 e) {
+        return vec_or((vector unsigned int)vec_and((vector unsigned int)c, (vector unsigned int)t), (vector unsigned int)vec_andc((vector unsigned int)e, (vector unsigned int)c));
+    }
+
+    // In both AltiVec and SSE there is no horizontal element compare, unlike ARM.  Fall back to scalar operations here...
+    SI bool any(I32 c) {
+        if (vec_extract((U32)c, 0) != 0) return 1;
+        if (vec_extract((U32)c, 1) != 0) return 1;
+        if (vec_extract((U32)c, 2) != 0) return 1;
+        if (vec_extract((U32)c, 3) != 0) return 1;
+        return 0;
+    }
+    SI bool all(I32 c) {
+        if (vec_extract((U32)c, 0) == 0) return 0;
+        if (vec_extract((U32)c, 1) == 0) return 0;
+        if (vec_extract((U32)c, 2) == 0) return 0;
+        if (vec_extract((U32)c, 3) == 0) return 0;
+        return 1;
+    }
+
+    SI F     mad(F f, F m, F a) { return vec_madd(f,m,a); }
+    SI F    nmad(F f, F m, F a) { return vec_msub(f,m,a); }
+    SI F  floor_(F v) { return vec_floor(v); }
+    SI F   ceil_(F v) { return vec_ceil(v); }
+    SI F   sqrt_(F v) { return vec_sqrt(v); }
+    SI I32 iround(F v) { return vec_cts((vector float)vec_rint(v), 0); }
+    SI U32 round(F v)  { return vec_ctu((vector float)vec_rint(v), 0); }
+    SI U32 round(F v, F scale) { return vec_cts((vector float)vec_rint(v*scale), 0); }
+
+    template <typename T>
+    SI V<T> gather(const T* p, U32 ix) {
+        return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
+    }
+    template <typename V, typename S>
+    SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
+        V before = gather(dst, ix);
+        V after = if_then_else(mask, src, before);
+        dst[ix[0]] = after[0];
+        dst[ix[1]] = after[1];
+        dst[ix[2]] = after[2];
+        dst[ix[3]] = after[3];
+    }
+
+    // TODO
+    // Finish converting these functions from the SSE translation layer to native AltiVec / VSX
+    SI void load2(const uint16_t* ptr, U16* r, U16* g) {
+        __m128i _01;
+        _01 = _mm_loadu_si128(((__m128i*)ptr) + 0);  // r0 g0 r1 g1 r2 g2 r3 g3
+        auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8);      // r0 r1 g0 g1 r2 g2 r3 g3
+        auto rg      = _mm_shufflehi_epi16(rg01_23, 0xD8);  // r0 r1 g0 g1 r2 r3 g2 g3
+
+        auto R = _mm_shuffle_epi32(rg, 0x88);  // r0 r1 r2 r3 r0 r1 r2 r3
+        auto G = _mm_shuffle_epi32(rg, 0xDD);  // g0 g1 g2 g3 g0 g1 g2 g3
+        *r = sk_unaligned_load<U16>(&R);
+        *g = sk_unaligned_load<U16>(&G);
+    }
+
+    SI void store2(uint16_t* ptr, U16 r, U16 g) {
+        U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
+        _mm_storeu_si128((__m128i*)ptr + 0, rg);
+    }
+
+    SI void load3(const uint16_t* ptr, U16* r, U16* g, U16* b) {
+        __m128i _0, _1, _2, _3;
+        // Load slightly weirdly to make sure we don't load past the end of 4x48 bits.
+        auto _01 =                _mm_loadu_si128((const __m128i*)(ptr + 0))    ,
+             _23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4);
+
+        // Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored).
+        _0 = _01;
+        _1 = _mm_srli_si128(_01, 6);
+        _2 = _23;
+        _3 = _mm_srli_si128(_23, 6);
+
+        // De-interlace to R,G,B.
+        auto _02 = _mm_unpacklo_epi16(_0, _2),  // r0 r2 g0 g2 b0 b2 xx xx
+             _13 = _mm_unpacklo_epi16(_1, _3);  // r1 r3 g1 g3 b1 b3 xx xx
+
+        auto R = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
+             G = _mm_srli_si128(R, 8),
+             B = _mm_unpackhi_epi16(_02, _13);  // b0 b1 b2 b3 xx xx xx xx
+
+        *r = sk_unaligned_load<U16>(&R);
+        *g = sk_unaligned_load<U16>(&G);
+        *b = sk_unaligned_load<U16>(&B);
+    }
+
+    SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
+        __m128i _01, _23;
+        _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1
+        _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
+
+        auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
+             _13 = _mm_unpackhi_epi16(_01, _23);  // r1 r3 g1 g3 b1 b3 a1 a3
+
+        auto rg = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
+             ba = _mm_unpackhi_epi16(_02, _13);  // b0 b1 b2 b3 a0 a1 a2 a3
+
+        *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
+        *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
+        *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
+        *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
+    }
+
+    SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
+        auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
+             ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
+
+        _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
+        _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
+    }
+
+    SI void load2(const float* ptr, F* r, F* g) {
+        F _01, _23;
+        _01 = _mm_loadu_ps(ptr + 0);
+        _23 = _mm_loadu_ps(ptr + 4);
+        *r = _mm_shuffle_ps(_01, _23, 0x88);
+        *g = _mm_shuffle_ps(_01, _23, 0xDD);
+    }
+
+    SI void store2(float* ptr, F r, F g) {
+        F _01 = _mm_unpacklo_ps(r, g),
+          _23 = _mm_unpackhi_ps(r, g);
+        _mm_storeu_ps(ptr + 0, _01);
+        _mm_storeu_ps(ptr + 4, _23);
+    }
+
+    SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
+        F _0, _1, _2, _3;
+        _0 = _mm_loadu_ps(ptr + 0);
+        _1 = _mm_loadu_ps(ptr + 4);
+        _2 = _mm_loadu_ps(ptr + 8);
+        _3 = _mm_loadu_ps(ptr +12);
+        _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
+        *r = _0;
+        *g = _1;
+        *b = _2;
+        *a = _3;
+    }
+
+    SI void store4(float* ptr, F r, F g, F b, F a) {
+        _MM_TRANSPOSE4_PS(r,g,b,a);
+        _mm_storeu_ps(ptr + 0, r);
+        _mm_storeu_ps(ptr + 4, g);
+        _mm_storeu_ps(ptr + 8, b);
+        _mm_storeu_ps(ptr +12, a);
+    }
+
 #elif defined(JUMPER_IS_NEON)
     template <typename T> using V = Vec<4, T>;
     using F   = V<float   >;
@@ -1025,6 +1208,15 @@ SI F from_half(U16 h) {
 #elif defined(JUMPER_IS_HSW)
     return _mm256_cvtph_ps((__m128i)h);
 
+// Disabled for now as this is not a particularly hot function
+// and there is no good reason to lock Chromium to POWER9+ yet.
+#elif 0 && defined(JUMPER_IS_VSX) && __has_builtin(__builtin_vsx_xvcvhpsp)
+    #if defined(SK_CPU_LENDIAN)
+        return __builtin_vsx_xvcvhpsp({h[0], 0, h[1], 0, h[2], 0, h[3], 0});
+    #else
+        return __builtin_vsx_xvcvhpsp({0, h[0], 0, h[1], 0, h[2], 0, h[3]});
+    #endif
+
 #else
     // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
     U32 sem = expand(h),
@@ -1048,6 +1240,16 @@ SI U16 to_half(F f) {
 #elif defined(JUMPER_IS_HSW)
     return (U16)_mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
 
+// Disabled for now as this is not a particularly hot function
+// and there is no good reason to lock Chromium to POWER9+ yet.
+#elif 0 && defined(JUMPER_IS_VSX) && __has_builtin(__builtin_vsx_xvcvsphp)
+    __vector unsigned short v = __builtin_vsx_xvcvsphp(f);
+    #if defined(SK_CPU_LENDIAN)
+        return U16{v[0], v[2], v[4], v[6]};
+    #else
+        return U16{v[1], v[3], v[5], v[7]};
+    #endif
+
 #else
     // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
     U32 sem = sk_bit_cast<U32>(f),
@@ -1123,7 +1325,7 @@ static constexpr size_t N = sizeof(F) /
     // instead of {b,a} on the stack.  Narrow stages work best for __vectorcall.
     #define ABI __vectorcall
     #define JUMPER_NARROW_STAGES 1
-#elif defined(__x86_64__) || defined(SK_CPU_ARM64)
+#elif defined(__x86_64__) || defined(SK_CPU_ARM64) || defined(SK_CPU_PPC64)
     // These platforms are ideal for wider stages, and their default ABI is ideal.
     #define ABI
     #define JUMPER_NARROW_STAGES 0
@@ -5023,6 +5225,10 @@ SI F sqrt_(F x) {
     float32x4_t lo,hi;
     split(x, &lo,&hi);
     return join<F>(sqrt(lo), sqrt(hi));
+#elif defined(JUMPER_IS_VSX)
+    vector float lo,hi;
+    split(x, &lo,&hi);
+    return join<F>(vec_sqrt(lo), vec_sqrt(hi));
 #else
     return F{
         sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
@@ -5046,6 +5252,10 @@ SI F floor_(F x) {
     __m128 lo,hi;
     split(x, &lo,&hi);
     return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi));
+#elif defined(JUMPER_IS_VSX)
+    vector float lo,hi;
+    split(x, &lo,&hi);
+    return join<F>(vec_floor(lo), vec_floor(hi));
 #else
     F roundtrip = cast<F>(cast<I32>(x));
     return roundtrip - if_then_else(roundtrip > x, F_(1), F_(0));
@@ -5057,6 +5267,7 @@ SI F floor_(F x) {
 //     (2 * a * b + (1 << 15)) >> 16
 // The result is a number on [-1, 1).
 // Note: on neon this is a saturating multiply while the others are not.
+// Note: for POWER, the code below was borrowed from emmintrin.h
 SI I16 scaled_mult(I16 a, I16 b) {
 #if defined(JUMPER_IS_SKX)
     return (I16)_mm256_mulhrs_epi16((__m256i)a, (__m256i)b);
@@ -5068,6 +5279,22 @@ SI I16 scaled_mult(I16 a, I16 b) {
     return vqrdmulhq_s16(a, b);
 #elif defined(JUMPER_IS_NEON)
     return vqrdmulhq_s16(a, b);
+#elif defined(JUMPER_IS_VSX)
+    const vector unsigned int shift = vec_splats((unsigned int)14);
+    const vector int ones = vec_splats((signed int)1);
+    vector int c = vec_unpackh((vector short)a);
+    vector int d = vec_unpackh((vector short)b);
+    vector int e = vec_unpackl((vector short)b);
+    c = vec_mul(c, d);
+    d = vec_unpackl((vector short)a);
+    d = vec_mul(d, e);
+    c = vec_sr(c, shift);
+    d = vec_sr(d, shift);
+    c = vec_add(c, ones);
+    c = vec_sr(c,(vector unsigned int)ones);
+    d = vec_add(d, ones);
+    d = vec_sr(d,(vector unsigned int)ones);
+    return vec_pack(c, d);
 #else
     const I32 roundingTerm = I32_(1 << 14);
     return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15);
@@ -5089,7 +5316,26 @@ SI U16 constrained_add(I16 a, U16 b) {
             SkASSERT(-ib <= ia && ia <= 65535 - ib);
         }
     #endif
+
+    // Technically, trying to add a signed and unsigned vector invokes undefined behavior
+    // Just because it sort of seems to work on Intel/ARM on Clang doesn't mean it works everywhere...
+    // FIXME: For added fun, the existing Skia unit tests do NOT properly test for issues in the
+    // lowp bilerp path.  Investigate and write an appropriate test case...
+#if defined(JUMPER_IS_VSX)
+    // Most POWER compilers end up doing some kind of width promotion that causes memory corruption
+    // and/or incorrect results.  This shows up as snow and general graphics corruption, especially
+    // noticeable when trying to display a PNG at less than 50% size (resize the browser window down
+    // until the artifacts appear).
+    // Take the (likely invisible) loss of precision, convert b to a signed int immediately, and do
+    // a proper saturated add here.  This seems to fully resolve the issue for all test cases Raptor
+    // has seen so far...
+    // In half precision mode, this function expects both input arguments to have been divided by
+    // two prior to being called, and returns the output without being multiplied back up by two
+    return vec_adds(a, (I16)b);
+#else
+    // Hic Sunt Dragones!
     return b + sk_bit_cast<U16>(a);
+#endif
 }
 
 SI F fract(F x) { return x - floor_(x); }
@@ -5947,8 +6193,14 @@ STAGE_GP(bilerp_clamp_8888, const SkRast
     //         2^-8 * v = 2^-9 * (tx*(R - L) + (R + L))
     //                v = 1/2 * (tx*(R - L) + (R + L))
     auto lerpX = [&](U16 left, U16 right) -> U16 {
+#if defined(JUMPER_IS_VSX)
+	// constrained_add() on POWER is run in half precision mode to avoid undefined behavior
+        I16 width  = (I16)(right - left) << 6;
+        U16 middle = (right + left) << 6;
+#else
         I16 width  = (I16)(right - left) << 7;
         U16 middle = (right + left) << 7;
+#endif
         // The constrained_add is the most subtle part of lerp. The first term is on the interval
         // [-1, 1), and the second term is on the interval is on the interval [0, 1) because
         // both terms are too high by a factor of 2 which will be handled below. (Both R and L are
@@ -5960,7 +6212,12 @@ STAGE_GP(bilerp_clamp_8888, const SkRast
         U16 v2  = constrained_add(scaled_mult(tx, width), middle) + 1;
         // Divide by 2 to calculate v and at the same time bring the intermediate value onto the
         // interval [0, 1/2] to set up for the lerpY.
+#if defined(JUMPER_IS_VSX)
+	// constrained_add() on POWER is run in half precision mode to avoid undefined behavior
+        return v2;
+#else
         return v2 >> 1;
+#endif
     };
 
     const uint32_t* ptr;
@@ -5994,9 +6251,15 @@ STAGE_GP(bilerp_clamp_8888, const SkRast
         I16 width  = (I16)bottom - (I16)top;
         U16 middle = bottom + top;
         // Add + 0x80 for rounding.
+#if defined(JUMPER_IS_VSX)
+	// constrained_add() on POWER is run in half precision mode to avoid undefined behavior
+        U16 blend  = constrained_add(scaled_mult(ty, width) / 2, middle / 2) + (0x80 / 2);
+        return blend >> 7;
+#else
         U16 blend  = constrained_add(scaled_mult(ty, width), middle) + 0x80;
-
         return blend >> 8;
+#endif
+
     };
 
     r = lerpY(topR, bottomR);
Index: chromium-124.0.6367.60/third_party/skia/src/base/SkVx.h
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/base/SkVx.h
+++ chromium-124.0.6367.60/third_party/skia/src/base/SkVx.h
@@ -42,7 +42,13 @@
 
 #if SKVX_USE_SIMD
     #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
-        #include <immintrin.h>
+        #if __PPC64__
+            #include <mmintrin.h>
+            #include <emmintrin.h>
+            #include <tmmintrin.h>
+        #else
+            #include <immintrin.h>
+        #endif
     #elif defined(SK_ARM_HAS_NEON)
         #include <arm_neon.h>
     #elif defined(__wasm_simd128__)
Index: chromium-124.0.6367.60/third_party/skia/src/core/SkBlitMask_opts_ssse3.cpp
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/core/SkBlitMask_opts_ssse3.cpp
+++ chromium-124.0.6367.60/third_party/skia/src/core/SkBlitMask_opts_ssse3.cpp
@@ -9,7 +9,7 @@
 #include "src/core/SkBlitMask.h"
 #include "src/core/SkOptsTargets.h"
 
-#if defined(SK_CPU_X86) && !defined(SK_ENABLE_OPTIMIZE_SIZE)
+#if (defined(SK_CPU_X86) || defined(SK_CPU_PPC64)) && !defined(SK_ENABLE_OPTIMIZE_SIZE)
 
 // The order of these includes is important:
 // 1) Select the target CPU architecture by defining SK_OPTS_TARGET and including SkOpts_SetTarget
Index: chromium-124.0.6367.60/third_party/skia/src/core/SkSwizzler_opts_ssse3.cpp
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/core/SkSwizzler_opts_ssse3.cpp
+++ chromium-124.0.6367.60/third_party/skia/src/core/SkSwizzler_opts_ssse3.cpp
@@ -10,7 +10,7 @@
 #include "src/core/SkOptsTargets.h"
 #include "src/core/SkSwizzlePriv.h"
 
-#if defined(SK_CPU_X86) && \
+#if (defined(SK_CPU_X86) || defined(SK_CPU_PPC64)) && \
     !defined(SK_ENABLE_OPTIMIZE_SIZE) && \
     SK_CPU_SSE_LEVEL < SK_CPU_SSE_LEVEL_SSSE3
 
Index: chromium-124.0.6367.60/third_party/skia/src/core/SkBlitMask_opts.cpp
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/core/SkBlitMask_opts.cpp
+++ chromium-124.0.6367.60/third_party/skia/src/core/SkBlitMask_opts.cpp
@@ -25,7 +25,7 @@ namespace SkOpts {
     static bool init() {
     #if defined(SK_ENABLE_OPTIMIZE_SIZE)
         // All Init_foo functions are omitted when optimizing for size
-    #elif defined(SK_CPU_X86)
+    #elif defined(SK_CPU_X86) || defined(SK_CPU_PPC64)
         #if SK_CPU_SSE_LEVEL < SK_CPU_SSE_LEVEL_SSSE3
             if (SkCpu::Supports(SkCpu::SSSE3)) { Init_BlitMask_ssse3(); }
         #endif
Index: chromium-124.0.6367.60/third_party/skia/src/core/SkBitmapProcState_opts.cpp
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/core/SkBitmapProcState_opts.cpp
+++ chromium-124.0.6367.60/third_party/skia/src/core/SkBitmapProcState_opts.cpp
@@ -25,7 +25,7 @@ namespace SkOpts {
     static bool init() {
     #if defined(SK_ENABLE_OPTIMIZE_SIZE)
         // All Init_foo functions are omitted when optimizing for size
-    #elif defined(SK_CPU_X86)
+    #elif defined(SK_CPU_X86) || defined(SK_CPU_PPC64)
         #if SK_CPU_SSE_LEVEL < SK_CPU_SSE_LEVEL_SSSE3
             if (SkCpu::Supports(SkCpu::SSSE3)) { Init_BitmapProcState_ssse3(); }
         #endif
Index: chromium-124.0.6367.60/third_party/skia/src/core/SkCpu.h
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/core/SkCpu.h
+++ chromium-124.0.6367.60/third_party/skia/src/core/SkCpu.h
@@ -55,7 +55,7 @@ inline bool SkCpu::Supports(uint32_t mas
 
     // If we mask in compile-time known lower limits, the compiler can
     // often compile away this entire function.
-#if SK_CPU_X86
+#if SK_CPU_X86 || defined(SK_CPU_PPC64)
     #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
     features |= SSE1;
     #endif
Index: chromium-124.0.6367.60/third_party/skia/src/core/SkBitmapProcState_opts_ssse3.cpp
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/core/SkBitmapProcState_opts_ssse3.cpp
+++ chromium-124.0.6367.60/third_party/skia/src/core/SkBitmapProcState_opts_ssse3.cpp
@@ -8,7 +8,7 @@
 #include "include/private/base/SkFeatures.h"
 #include "src/core/SkOptsTargets.h"
 
-#if defined(SK_CPU_X86) && !defined(SK_ENABLE_OPTIMIZE_SIZE)
+#if (defined(SK_CPU_X86) || defined(SK_CPU_PPC64)) && !defined(SK_ENABLE_OPTIMIZE_SIZE)
 
 // The order of these includes is important:
 // 1) Select the target CPU architecture by defining SK_OPTS_TARGET and including SkOpts_SetTarget
Index: chromium-124.0.6367.60/third_party/skia/include/private/base/SkFeatures.h
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/include/private/base/SkFeatures.h
+++ chromium-124.0.6367.60/third_party/skia/include/private/base/SkFeatures.h
@@ -63,6 +63,8 @@
 
 #if defined(__i386) || defined(_M_IX86) ||  defined(__x86_64__) || defined(_M_X64)
   #define SK_CPU_X86 1
+#elif defined(__powerpc64__) || defined(__PPC64__)
+  #define SK_CPU_PPC64 1
 #endif
 
 /**
Index: chromium-124.0.6367.60/third_party/skia/modules/skcms/src/skcms_internals.h
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/modules/skcms/src/skcms_internals.h
+++ chromium-124.0.6367.60/third_party/skia/modules/skcms/src/skcms_internals.h
@@ -47,6 +47,7 @@ extern "C" {
                                                  && !defined(__EMSCRIPTEN__) \
                                                  && !defined(__arm__) \
                                                  && !defined(__riscv) \
+                                                 && !defined(__powerpc64__) \
                                                  && !defined(__loongarch__) \
                                                  && !defined(_WIN32) && !defined(__SYMBIAN32__)
             #define SKCMS_HAS_MUSTTAIL 1
Index: chromium-124.0.6367.60/third_party/skia/src/opts/SkSwizzler_opts.inc
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/opts/SkSwizzler_opts.inc
+++ chromium-124.0.6367.60/third_party/skia/src/opts/SkSwizzler_opts.inc
@@ -14,7 +14,10 @@
 #include <cmath>
 #include <utility>
 
-#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
+#if defined(SK_PPC64_HAS_SSE_COMPAT)
+    #include <emmintrin.h>
+    #include <tmmintrin.h>
+#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
     #include <immintrin.h>
 #elif defined(SK_ARM_HAS_NEON)
     #include <arm_neon.h>
@@ -61,6 +64,33 @@ SI float reciprocal_alpha_times_255(floa
 SI float reciprocal_alpha(float a) {
     return reciprocal_alpha_portable(a);
 }
+#elif defined(SK_PPC64_HAS_SSE_COMPAT)
+// -- VSX -- Harden against timing attacks
+SK_NO_SANITIZE("float-divide-by-zero")
+static inline float reciprocal_alpha_times_255(float a) {
+    SkASSERT(0 <= a && a <= 255);
+
+    vector float vA{a,a,a,a};
+    vector float vB{255.0f,255.0f,255.0f,255.0f};
+    vector float vC{0.0f,0.0f,0.0f,0.0f};
+    vector float q = vec_div(vB, vA);
+    vector float vCmp{static_cast<float>(vA != vC)};
+
+    return vec_and(vCmp, q)[0];
+}
+
+SK_NO_SANITIZE("float-divide-by-zero")
+static inline float reciprocal_alpha(float a) {
+    SkASSERT(0 <= a && a <= 1);
+
+    vector float vA{a,a,a,a};
+    vector float vB{1.0f,1.0f,1.0f,1.0f};
+    vector float vC{0.0f,0.0f,0.0f,0.0f};
+    vector float q = vec_div(vB, vA);
+    vector float vCmp{static_cast<float>(vA != vC)};
+
+    return vec_and(vCmp, q)[0];
+}
 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 && (defined(__clang__) || !defined(_MSC_VER))
 // -- SSE -- Harden against timing attacks -- MSVC is not supported.
 using F4 = __m128;
Index: chromium-124.0.6367.60/third_party/skia/src/core/SkBlitter_ARGB32.cpp
===================================================================
--- chromium-124.0.6367.60.orig/third_party/skia/src/core/SkBlitter_ARGB32.cpp
+++ chromium-124.0.6367.60/third_party/skia/src/core/SkBlitter_ARGB32.cpp
@@ -372,7 +372,11 @@ static inline SkPMColor blend_lcd16_opaq
                 // Load four destination pixels into dst_sse.
                 __m128i dst_sse = _mm_load_si128(d);
                 // Load four 16-bit masks into lower half of mask_sse.
+#if defined(SK_CPU_PPC64)
+                __m128i mask_sse = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(mask));
+#else
                 __m128i mask_sse = _mm_loadu_si64(mask);
+#endif
 
                 // Check whether masks are equal to 0 and get the highest bit
                 // of each byte of result, if masks are all zero, we will get
@@ -438,7 +442,12 @@ static inline SkPMColor blend_lcd16_opaq
                 // Load four destination pixels into dst_sse.
                 __m128i dst_sse = _mm_load_si128(d);
                 // Load four 16-bit masks into lower half of mask_sse.
+#if defined(SK_CPU_PPC64)
+                __m128i mask_sse = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(mask));
+#else
                 __m128i mask_sse = _mm_loadu_si64(mask);
+#endif
+
 
                 // Check whether masks are equal to 0 and get the highest bit
                 // of each byte of result, if masks are all zero, we will get